Left localizable rings and their characterizations
نویسنده
چکیده
A new class of rings, the class of left localizable rings, is introduced. A ring R is left localizable if each nonzero element of R is invertible in some left localization SR of the ring R. Explicit criteria are given for a ring to be a left localizable ring provided the ring has only finitely many maximal left denominator sets (eg, this is the case if a ring has a left Artinian left quotient ring). It is proved that a ring with finitely many maximal left denominator sets is a left localizable ring iff its left quotient ring is a direct product of finitely many division rings. A characterization is given of the class of rings that are finite direct product of left localization maximal rings.
منابع مشابه
Weakly left localizable rings
A new class of rings, the class of weakly left localizable rings, is introduced. A ring R is called weakly left localizable if each non-nilpotent element of R is invertible in some left localization SR of the ring R. Explicit criteria are given for a ring to be a weakly left localizable ring provided the ring has only finitely many maximal left denominator sets (eg, this is the case if a ring h...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملLeft WMC2 Rings
We introduce in this paper the concept of left WMC2 rings and concern ourselves with rings containing an injective maximal left ideal. Some known results for left idempotent reflexive rings and left HI rings can be extended to left WMC2 rings. As applications, we are able to give some new characterizations of regular left self-injective rings with nonzero socle and extend some known results on ...
متن کاملGraphs vertex-partitionable into strong cliques
A graph is said to be well-covered if all its maximal independent sets are of the same size. In 1999, Yamashita and Kameda introduced a subclass of well-covered graphs, called localizable graphs and defined as graphs having a partition of the vertex set into strong cliques, where a clique in a graph is strong if it intersects all maximal independent sets. Yamashita and Kameda observed that all ...
متن کاملAN EXTENDED NOTION OF THE GRADE OF AN IDEAL, AND GORENSTEIN RINGS
In this paper we shall apply modules of generalized fractions to extend the notion of the grade of an ideal, and to obtain characterizations of Gorenstein rings.
متن کامل